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A Probabilistic Semantics for Abstract Argumentation

Matthias Thimm!

Abstract. Classical semantics for abstract argumentation frame-
works are usually defined in terms of extensions or, more recently,
labelings. That is, an argument is either regarded as accepted with
respect to a labeling or not. In order to reason with a specific seman-
tics one takes either a credulous or skeptical approach, i.e. an argu-
ment is ultimately accepted, if it is accepted in one or all labelings,
respectively. In this paper, we propose a more general approach for a
semantics that allows for a more fine-grained differentiation between
those two extreme views on reasoning. In particular, we propose a
probabilistic semantics for abstract argumentation that assigns prob-
abilities or degrees of belief to individual arguments. We show that
our semantics generalizes the classical notions of semantics and we
point out interesting relationships between concepts from argumen-
tation and probabilistic reasoning. We illustrate the usefulness of our
semantics on an example from the medical domain.

1 Introduction

The field of computational models of argumentation [18] is con-
cerned with non-monotonic reasoning mechanisms that focus on the
role of arguments. An argument is an entity that represents some
grounds to believe in a certain statement and that can be in conflict
with arguments establishing contradictory claims. The most com-
monly used framework to talk about general issues of argumentation
is that of abstract argumentation [5]. In abstract argumentation, argu-
ments are represented as atomic entities and the interrelationships be-
tween different arguments are modeled using an attack relation. Ab-
stract argumentation has been thoroughly investigated in the past fif-
teen years and there is quite a lot of work on, e. g. extending abstract
argumentation frameworks [8, 12, 7] and, in particular, semantical
issues [3, 4, 2, 19]. Several different kinds of semantics for abstract
argumentation frameworks have been proposed that highlight differ-
ent aspects of argumentation. Usually, semantics are given to abstract
argumentation frameworks in terms of extensions or, more recently,
labelings. For a specific labeling an argument is either accepted, not
accepted, or undecided. In a fixed semantical context, there is usu-
ally a set of labelings that is consistent with the semantical context.
In order to reason with a semantics one has to take either a credulous
or skeptical perspective. That is, an argument is ultimately accepted
wrt. a semantics if the argument is accepted by at least one labeling
consistent with that semantics (the credulous perspective) or if the
argument is accepted by all labelings consistent with the semantics
(the skeptical perspective). This extreme points of views may result
in undesired results as in extreme cases the set of credulously ac-
cepted arguments may contain nearly the whole set of arguments and
the set of skeptically accepted set of arguments may be nearly empty.

In this paper we propose a new way to assign semantics to ab-
stract argumentation frameworks. More precisely, instead of using
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labelings we use probability functions on subsets of arguments as in-
terpretations and define a probabilistic satisfaction relation that gen-
eralizes the notion of a complete labeling. In contrast to other works
that combine abstract argumentation with quantitative uncertainty
[12, 8, 6, 7, 11, 10, 1] we do not extend the underlying notion of
an abstract argumentation framework but assess its inherent uncer-
tainty using a more general semantics. In order to reason with this
semantics we adopt notions from probabilistic reasoning for reason-
ing with sets of probability functions. We show that probabilistic se-
mantics allow for a more fine-grained view on the relationships of
arguments within an abstract argumentation framework.

On a more wider perspective, this paper also gives some first in-
sights on the relationships between two of the most important sub-
fields of artificial intelligence, namely argumentation and probabilis-
tic reasoning [16, 15]. In particular, we show that the grounded label-
ing in abstract argumentation corresponds to the maximum entropy
model in probabilistic reasoning (wrt. our probabilistic semantics for
abstract argumentation frameworks).

The rest of this paper is organized as follows. In Section 2 we
give a brief overview on abstract argumentation and exemplify the
problems raised above to motivate our approach. In Section 3 we in-
troduce a probabilistic semantics for abstract argumentation frame-
works and discuss its properties. We continue in Section 4 with a
comparison of the probabilistic semantics and classical semantics
and show interesting relationships between notions from argumenta-
tion and probabilistic reasoning. In Section 5 we illustrate the useful-
ness of the approach with a short example and discuss related work in
Section 6. We conclude in Section 7 with a summary and discussion.

2 Abstract Argumentation

Abstract argumentation frameworks [5] take a very simple view on
argumentation as they do not presuppose any internal structure of
an argument. Abstract argumentation frameworks only consider the
interactions of arguments by means of an attack relation between
arguments.

Definition 1 (Abstract Argumentation Framework) An abstract
argumentation framework AF is a tuple AF = (Arg, —) where Arg
is a set of arguments and — is a relation —C Arg x Arg.

For two arguments A, B € Arg the relation A — B means that
argument A attacks argument B. Abstract argumentation frameworks
can be concisely represented by directed graphs, where arguments
are represented as nodes and edges model the attack relation.

Example 1 Consider the abstract argumentation
framework  AF = (Arg,—) depicted in Fig. I
Here it is Arg = {A1, A2, A3, As, As} and —=
{(-Alv -A2)7 (-A27 -Al)7 (AQ,AS)a (.Ag,.A4), (A47~A5)7 (A57~A4)7
(As, As)}.



Figure 1.

A simple argumentation framework

Semantics are usually given to abstract argumentation frameworks by
means of extensions [5] or labelings [19]. An extension E of an argu-
mentation framework AF = (Arg, —) is a set of arguments £ C Arg
that gives some coherent view on the argumentation underlying AF.
A labeling L is a function L : Arg — {in, out, undec} that assigns
to each argument A € Arg either the value in, meaning that the ar-
gument is accepted, out, meaning that the argument is not accepted,
or undec, meaning that the status of the argument is undecided. Let
in(L) = {A | L(A) = in} and out(L) resp. undec(L) be defined
analogously. As extensions can be characterized by the arguments
that labeled in in some labeling, we restrain our attention to labelings
henceforth. In order to distinguish extension- and labeling-based se-
mantics to the probabilistic semantics in the next section we denote
the former classical semantics.

In the literature [5, 4] a wide variety of different types of classical
semantics has been proposed. Arguably, the most important property
of a semantics is its admissibility. A labeling L is called admissible
if and only if for all arguments A € Arg

1. if L(A) = out then there is B € Arg with L(B) = in and B —
A, and
2. if L(A) = in then L(B) = out for all B € Arg with B — A,

and it is called complete if, additionally, it satisfies

3. if L(A) = undec then there is no B € Arg with B — A and
L(B) = in and there is a B’ € Arg with B’ — A and L(B') #
out.

The intuition behind admissibility is that an argument can only be
accepted if there are no attackers that are accepted and if an argument
is not accepted then there has to be some reasonable grounds. The
idea behind the completeness property is that the status of argument
is only undec if it cannot be classified as in or out. Different types of
classical semantics can be phrased by imposing further constraints.

Definition 2 Ler AF = (Arg,—) be an abstract argumentation
Sframework and L : Arg — {in, out, undec} a complete labeling.

e L is grounded if and only if in(L) is minimal.

e [ is preferred if and only if in(L) is maximal.

e L is stable if and only if undec(L) = (.

e [ is semi-stable if and only if undec(L) is minimal.

All statements on minimality/maximality are meant to be with respect
to set inclusion.

Note that a grounded labeling is uniquely determined and always
exists [5]. Besides the above mentioned types of classical semantics
there are a lot of further proposals such as CF2 semantics [3]. How-
ever, in this paper we focus on complete, grounded, preferred, stable,
and semi-stable semantics.

Example 2 We continue Ex. 1. Consider the labeling L defined via
L(Al) =in L(Az) = out L(Aj) — out
L(As)=out  L(As)=in

Clearly, L is an admissible labeling as it satisfies properties 1.) and
2.) from above. Additionally, it is complete and also preferred, stable,
and semi-stable. Furthermore, consider the labeling L' defined via

LI(A1) = out Ll(.Az) =in Ll(Ag) = out
L/(.A4) =in L/(A5) = out

The labeling L' is also admissible, complete, preferred, stable, and
semi-stable. Note, that the grounded labeling L, is defined via
Ly(A1) = Ly(A2) = Lg(As) = Lg(As) = Lg(As) = undec.

As one can see in the above example, most semantics are multi-
extension semantics. That is, there is not always a unique labeling
induced by the semantics. In order to reason with multi-extension se-
mantics, usually, one takes either a credulous or skeptical perspec-
tive. That is, an argument A is credulously inferred with seman-
tics S € {complete, preferred, stable, semi-stable} if there is a S-
labeling L with L(A) = in. An argument A is skeptically inferred
with semantics S if for all S-labelings L it holds that L(A) = in.
Taking either a credulous or skeptical perspective is a crucial choice
as the set of inferred arguments might change drastically.

Example 3 We continue Ex. 2. Besides L and L' there is also an-
other labeling L" that is admissible, complete, preferred, stable, and
semi-stable:

L"(A1) = out
L”(.A4) = out

L//(.AQ) =in
L"(As) = in

L"(A3) = out

With respect to complete, preferred, stable, and semi-stable seman-
tics, it follows that no argument is skeptically inferred and all argu-
ments but As are credulously inferred.

The example above shows that the difference of skeptical and cred-
ulous inference may be huge. Consequently, it is hard to assess the
quality or strength of argument in an argumentation framework if
only those types of inference are considered, cf. [13]. Imagine that
the arguments in Ex. 1 are interpreted within a decision-support sys-
tem in the medical domain. That is, the arguments A, ..., As rep-
resent different drugs for a specific disease and an attack means a
negative “influence” of one drug to another. In this system, a decision
comprises a set of drugs that are used for treatment and the question
is how to select this set? With credulous semantics the recommenda-
tion is to administer almost all drugs and with skeptical semantics the
recommendation is to administer no drug. None of these recommen-
dations seem appropriate in the example. In particular, administering
no drug at all may not be possible as some action may be required
to be performed. Another possible way to select the set of drugs is
to select the drugs from one specific labeling. But then the question
arises which labeling to chose?

3 Probabilistic Semantics

In order to get a more fine-grained view on the status of arguments
we propose a new semantics that generalizes classical semantics and
is based on a probabilistic interpretation of arguments. For that, we
need some further notation. Let 2% denote the power set of a set X'

Definition 3 Let X' be some finite set. A probability function P on
X is a function P : 2% — [0,1] that satisfies

1. P(X)=1and
2. P(X]_UXQ) = P(Xl)-‘rP(Xz)fOI‘Xl,Xz Q X, leXQ = @



For x € X we write P(z) instead of P({z}). Here, a probability
function is a function on the set of subsets of some (finite) set with
two characteristic properties. First, the function must be normalized,
i.e., the whole set must have probability one (property 1 above). Sec-
ond, the probability of the union of two disjoint set is the sum of the
probabilities of each set (property 2 above). These two properties are
also called the Kolmogorov properties of probability [9]. The follow-
ing observation is easy to see and the proof can be found e. g. in [15].

Proposition 1 For X C X and a probability function P on X it

holds
P(X)=Y_ P(x)

reX

Due to the above proposition a probability function can be defined
just by defining the probabilities for each z € X.

A probability function is usually used to model statistical events.
Then X is the set of all possible atomic events and subset X of X’
represents the disjunction of the events in X. Given that X' contains
all possible events, property 1 above says that one event has to occur
and property 2 states that atomic events are mutually exclusive.

In this paper, we use another interpretation for probability, that
of subjective probability [15]. There, a probability P(X) for some
X C X denotes the degree of belief we put into X. Then a prob-
ability function P can be seen as an epistemic state of some agent
that has uncertain beliefs with respect to X'. In probabilistic reason-
ing [16, 15], this interpretation of probability is widely used to model
uncertain knowledge representation and reasoning.

In the following, we consider probability functions on sets of argu-
ments of an abstract argumentation frameworks. Let AF = (Arg, —)
be some fixed abstract argumentation framework and let £ = 2" be
the set of all sets of arguments. Let now Par be the set of proba-
bility functions of the form P : 2 — [0,1]. A probability func-
tion P € ‘Par assigns to each set of possible extensions of AF a
probability, i.e., P(e) for e € & is the probability that e is an ex-
tension and P(F) for E C & is the probability that any of the sets
in E is an extension. In particular, note the difference between e. g.
P{A,B}) = P({{A,B}}) and P({{A},{B}}) for arguments
A, B. While the former denotes the probability that {.A, B} is an
extension the latter denotes the probability that { A} or {B} is an
extension. In general, it holds P({A, B}) # P({{A},{B}}).

For P € Par and A € Arg we abbreviate

P = Y Ple)

AeceCArg

Given some probability function P, the probability P(.A) represents
the degree of belief that A is in an extension (according to P), i.e.,
P(A) is the sum of the probabilities of all possible extensions that
contain .A. The set Par contains all possible views one can take on
the arguments of an abstract argumentation framework AF.

Example 4 We continue Ex. 1. Consider the function P € Par
defined via P({A1, As, As}) = 0.3, P({A1, As}) = 045,
P({As, A2}) = 0.1, P({Az2, As}) = 0.15, and P(e) = O for
all remaining e € &£. Due to Prop. 1 the function P is well-defined
ase.g.

P({{A5,A2},{A2,A4}, {AS}})
= P({A4s, A2}) + P({A2, As}) + P({A4s})
=0.14+0.154+0=0.25

Therefore, P is a probability function according to Def. 3. According
to P the probabilities of each argument of AF compute to P( A1) =

0.75, P(Az) = 0.25, P(As) = 0.3, P(A4) = 0.6, and P(As) =
0.4.

In the following, we are only interested in those probability func-
tions of Par that agree with our intuition on the interrelationships of
arguments and attack. For example, if an argument A is not attacked
we should completely believe in its validity if no further informa-
tion is available. We propose the following notion of justifiability to
describe this intuition.

Definition 4 A probability function P € Par is called p-justfiable
wrt. AF, denoted by P |=; AF, if it satisfies for all A € Arg

1. P(A) <1— P(B)forall B,c Arg with B — A and
2. P(A)> 1= p.r P(B) where F = {B| B — A}.

Let PR be the set of all p-justifiable probability functions wrt. AF.

The notion of p-justifiability generalizes the concept of complete
semantics to the probabilistic setting. Property 1.) says that the de-
gree of belief we assign to an argument .4 is bounded from above by
the inverse degrees of belief we put into the attackers of .A. As a spe-
cial case, note that if we completely believe in an attacker of A, i.e.
P(B) =1 for some B with B — A, then it follows P(A) = 0. This
corresponds to property 1.) of a complete labeling, see Section 2.
Property 2.) of Def. 4 says that the degree of belief we assign to an
argument A is bounded from below by the inverse of the sum of
the degrees of belief we we put into the attacks of A. As a special
case, note that if we completely disbelieve in all attackers of A, i.e.
P(B) = 0 for all B with B — A, then it follows P(.A) = 1. This
corresponds to property 2.) of a complete labeling, see Section 2.
The following proposition establishes the probabilistic analogue of
the third property of a complete labeling.

Proposition 2 Let P be p-justifiable and A € Arg. If P(A) €
(0,1) then

1. thereisno B € Arg with B — A and P(B) = 1 and
2. thereisa B’ € Arg with B — A and P(B') > 0.

Before we investigate the relationships between our probabilistic
semantics and classical argumentation semantics in more depth we
analyze the properties of probabilistic semantics by itself.

Example 5 We continue Ex. 4. There, the probability function P is
p-justifiable wrt. AF as e.g. P(A1) < 1 — P(A2) and P(As) >
1—P(A3) — P(As).

The set of p-justifiable probability functions contains all probabil-
ity functions that agree with our intuition of argumentation. This set
has some nice properties as shown below.

Proposition 3 The set P is non-empty and convex.

The above proposition states that for every argumentation frame-
work AF there is a p-justifiable probability function P wrt. AF. Fur-
thermore, the set of p-justifiable probability functions is closed wrt.
to convex combination. That is, given two p-justifiable probability
function Py, P2 and some § € [0, 1] it follows that Ps defined via
Ps(e) = §Pi(e) + (1 — §) P2(e) for each e € & is also p-justifiable.

In order to reason with a set of probability functions one can use
model-based inductive reasoning techniques [15], 1. ., instead of rea-
soning with the complete set one selects some appropriate represen-
tative and performs reasoning solely based on this representative. A



very important approach for that is reasoning based on the principle
of maximum entropy [15]. For a probability function P € Par the
entropy H(P) of P is defined as H(P) = —3__ .. P(e)log P(e)
with 0log 0 = 0. The entropy measures the amount of indetermi-
nateness of a probability function P. A probability function P; that
describes absolute certain knowledge, i.e. Pi(e) = 1 forsomee € £

and Pi(e’) = 0 for every other ¢/ € &, yields minimal entropy
H(P1) = 0. The uniform probability function Py with Po(e) = 1/|¢|
for every e € & yields maximal entropy H (Py) = —log /€.

Definition 5 Let P C Par be a set of probability functions.

e P* € P is a maximum entropy model of P if H(P”) is maximal
in {H(P) | P € P}. Let MaxE(P) be the set of all maximum
entropy models of P.

e P* € P is a minimum entropy model of P if H(P™) is minimal
in {H(P) | P € P}. Let MIinE(P) be the set of all minimum
entropy models of P.

e P, is the centroid of P if

Jp P(e)dP(e)

P.(e) = f’p aP()

foralle € E.

A maximum entropy model P € MaxE(P) is as unbiased as pos-
sible among the probability functions in P, i. e., it contains as less in-
formation as possible. Reasoning based on the principle of maximum
entropy is a popular approach in probabilistic reasoning as it satisfies
several nice properties [15]. Here, we also consider minimum en-
tropy models as they correspond to stable labelings (see below) and
the centroid as further approaches for selecting specific models from
a set of probability functions.

Proposition 4 If P is a non-empty convex set of probability func-
tions then |MaxE(P)| = 1, i.e. a maximum entropy model exists
and is uniquely determined.

For the proof of the above proposition see e. g. [15]. Taking to-
gether Propositions 3 and 4 we obtain the following nice observation
as a simple corollary.

Corollary 1 The maximum entropy model P* of Pie exists and is
uniquely determined.

Note that the centroid P. of PA¢ is, by definition, also uniquely
determined® but this is, in general, not true for minimum entropy
models.

Example 6 We continue Ex. 4. While both the maximum entropy
model P* and the centroid P. of Pir are uniquely determined there
are three minimum entropy models P{"™ P P of PAc. The de-
grees of beliefs for the arguments of AF wrt. those models are given
in Table 1, rounded to two decimal places. The maximum entropy

[P | p | ppn | ppn | g

Ap | 0.5 ] 043 0 1 0
Az | 0.5 | 0.57 1 0 1
Az | 0.5 | 0.14 0 0 0
Ag | 0.5 | 0.36 1 0 0
As | 0.5 | 0.64 0 1 1

Table 1. Degrees of belief in Ex. 6

2 As PA]F is convex it also holds that P, € PA]F'

model is as unbiased as possible, assigning a degree of belief of 0.5
to each argument, whereas the minimum entropy models have max-
imum information and take extreme values. The centroid P, reflects
the overall situation in AF. For example, argument As is attacked by
two arguments and receives a small degree of belief. Furthermore,
both Ay and As each attack two other arguments and also defend
themselves against attacks, therefore getting a relatively high degree
of belief of 0.57 and 0.64, respectively.

We take a closer look on the centroid of PZ in the next section.

4 Comparison with Classical Semantics

In this section, we investigate the relationships between classical se-
mantics and probabilistic semantics in more depth.

A probability function P € Par is a generalization of a labeling.
For an argument A € Arg, the probability P(A) = 1 is equivalent
to stating that the argument A is in and the probability P(A) = 0 is
equivalent to stating the A is out. A probability P(.A) € (0,1) gen-
eralizes the status undec while P(A) = 0.5 is the most “unbiased
undec”. Labelings can be linked to probability functions as follows.
For a labeling L the characteristic probability function Py, of L is
defined via

1. if undec(L) = :
Pu(in(L)) =
Pr(e")
2. if undec(L) # 0:
Pr(in(L)) = Pr(in(L) Uundec(L)) = 0.5
Pr(e)=0 foralle’ € £\ {in(L),in(L) U undec(L)}

1
0 foralle’ € £\ {in(L)}

Note that Py, is well-defined due to Prop. 1. It is easy to see, that
Pr(A) = 1if and only if L(A) = in, P.(A) = 0 if and only if
L(A) = out, and Pr(A) = 0.5 if and only if L(A) = undec.
Probability functions Py, P> are argument-equivalent, denoted by
P, = Py, ifand only if P1(A) = P2(A) forall A € Arg.

Theorem 1 Let AF be some abstract argumentation framework and
let L be some labeling.

1. If L is complete then Py, is p-justifiable.

2. L is grounded if and only if P, = P* for {P*} = MaxE(P¢).

3. If stable labelings exist for AF then L is stable if and only if Py, €
MinE(P3e).

The above theorem establishes quite interesting relationships be-
tween our probabilistic semantics and classical semantics. First, the
concept or p-justifiable generalizes complete semantics as every
complete labeling induces a p-justifiable probability function. Sec-
ond, the grounded labeling of an argumentation framework corre-
sponds to the maximum entropy model of all p-justifiable probability
functions (up to argument-equivalence). Third, the set of stable la-
beling corresponds to the set of minimum entropy models, provided
that the former set is non-empty. The final two observations link the
information-theoretic concept of entropy to classical argumentation
semantics. The maximum entropy model of P is the probability
function which is as unbiased as possible whereas the grounded la-
beling is the labeling which is as cautious as possible. Furthermore,
a minimum entropy model of PP is a probability function that max-
imizes information. Similarly, a stable labeling L has maximum in-
formation as it assigns to each argument either in or out.

Note that the converse of 1.) in Th. 1 does not hold in general.



Example 7 Consider the abstract argumentation framework AF =
(Arg, —) with Arg = {A1, Az, As} and — as depicted in Fig. 2.
Let P be a probability function defined as P({A1}) = P({A2}) =
0.5 and P(e) = 0 for all remaining e € E. Hence P(A;) =
P(Az) = 0.5 and P(As3) = 0. Note that P is p-justifiable wrt. AF.
However, there is no complete labeling L with L(A1) = L(A2) =
undec and L(A3z) = out.

Figure 2. Argumentation framework from Ex. 7

Due to Th. 1 and Ex. 7 we have established that probabilistic se-
mantics is a clear generalization of classical complete semantics.
Therefore, we can integrate probabilistic semantics into the hierar-
chy of classical semantics as depicted in Fig. 3 (an arrow reads “is
less general than”).

stable semantics

™~

semi-stable semantics

N

preferred semantics  grounded semantics

N /

complete semantics

v

probabilistic semantics
Figure 3. Relationships between semantics

The converse of 3.) in Th. 1 does not hold in general as well as
a minimum entropy model even exists if AF has no stable labeling.
However, the set MinE(Pi) can be characterized as follows.

Proposition 5 Ler AF be some abstract argumentation framework
and let L be some labeling. Then P, € MInE(P3e) if and only if
undec(L) is minimal wrt. set cardinality.

Note that the above proposition does not establish that MinE (P3¢ )
is equivalent to the set of semi-stable labelings as a semi-stable la-
beling is characterized by having a minimal undec(L) wrt. set in-
clusion. However, it holds that L is a semi-stable labeling if P, €
MIinE(Pe).

In the previous section, the centroid P. of P has proven to be a
good candidate for representing the set P3¢ as a whole. We now turn
to its relationship with classical semantics.

Theorem 2 Let {L1,...
AF. Then the set Pk is a polytope where {PL,,--
of its extremal points.

, Lm } be the set of complete labelings wrt.
., Pr,. } is the set

The above theorem states that the set P is the convex hull of the
characteristic probability functions of all complete labelings. It also
leads to a very simple characterization of the centroid P, of PRe.

Corollary 2 Let {L1, ..., Ln} be the set of complete labelings wrt.
AF = (Arg, —) and let P. be the centroid of Pig. Then

m

P.(A) = forall A € Arg

with 6(L, A) = 1if L(A) = in, §(L,.A) = 0 if L(A) = out, and
0(L,.A) = 0.5 otherwise.

In other words, the probability of an argument in the centroid of
‘Pir is its average probability with respect to all complete labelings.

5 Reasoning in Critical Domains

In order to illustrate the usefulness of our non-classical semantics
we elaborate on an example from the medical domain. This exam-
ple is inspired by an example from [14] and does not qualify for
being medically accurate. Consider the argumentation framework
AF = (Arg,—) with Arg = {D1,D2,T1,72,C,P1,P2} and —
as depicted in Fig. 4. In AF, the arguments D; and D5 are arguments
for treating a patient suffering from blood clotting with aspirin and
chlopidogrel, respectively. Both arguments attack each other as only
one drug may be selected for treatment. The arguments 7; and 72
represent contradictory medical trials stating that aspirin is more ef-
fective than chlopidogrel (72) and that chlopidogrel is more effective
than aspirin (71). Argument C states that chlopidogrel is too costly
and should not be prescribed. Arguments P; and P, represent dif-
fering views on the importance of the features “health” and “low ex-
penses’: Py states that the health of a patient if more important than
expenses, therefore attacking argument C. The argument P> states
that having low expenses is more important than a patient’s health.
It can easily be seen that the grounded labeling of AF declares each

Figure 4. Argumentation framework for the medical domain

argument as undec. Therefore, for both credulous and skeptical in-
ference no arguments can be established as ultimately accepted. For
complete, preferred, semi-stable, stable semantics several labelings
can be identified, some of the declaring D; as in and some declaring
D- as in. However, for all those classical semantics each argument
in AF can be credulously inferred and none can be skeptically in-
ferred. The centroid P. assigns to each argument except D> a degree
of belief of 0.5. The degree of belief of D, is approximately 0.278.
This assignment reflects the overall situation in AF as Ds is more
controversial than D; due to the former’s cost. Although the degree
of belief in D; is not very high it is still higher than D> which makes
D, abetter recommendation. Furthermore, the centroid P, also gives
a concise overview on the uncertainty inherent in AF which supports
the user in assessing his confidence when selecting a specific action.

6 Related Work

The original definition of argumentation semantics by Dung [5] re-
lies on the concept of an extension with a clear understanding of
the status of an argument: an argument is either in an extension or
not. Argument labelings [19] generalize this view and make the (al-
ready implicitly existent) third status of an argument explicit by dis-
tinguishing between arguments that are out and arguments that are
undecided. Our approach generalizes this idea even further by con-
sidering the whole interval [0, 1] as the space for the status of an
argument. As discussed in Section 4 the classical notions of in and
out can be identified with the probabilities of 1 and 0, respectively,



while the argument status undec corresponds to the whole open in-
terval (0, 1), with 0.5 being the most “unbiased” notion of undec.

To the best of our knowledge, the work reported here is the first
that defines a probabilistic semantics for pure abstract argumenta-
tion frameworks. However, there are some works that extend ab-
stract argumentation frameworks to incorporate some form of quan-
titative uncertainty, see e. g. [8, 6, 12, 7]. For example, the work [12]
defines a probabilistic argumentation framework PAF via PAF =
(Arg, Parg, —, P—,) where (Arg, —) is an abstract argumentation
framework, Pag is a probability function on Arg, and P_, is a proba-
bility function on —. A probabilistic argumentation framework PAF
serves as a template for a set of abstract argumentation frameworks
AF4,...,AF,. Each AF; (i = 1,...,n) is a sub-framework of
(Arg, —) and has an associated probability P(AF;) of its “occur-
rence” which is determined by the probabilities of arguments and at-
tacks. By fixing a specific classical semantics, e. g. grounded seman-
tics, in [12] a probabilistic interpretation P(.A) for an argument .4
is computed by summing up the probabilities of those AF; in which
A is in the grounded extension. Similarly, the work [8] extends ab-
stract argumentation frameworks by allowing the attack relation —
to be a fuzzy relation. Weighted argument systems [7] assign to each
attack a positive real-value to represent its strength. Reasoning in
weighted argument systems is performed by fixing some threshold 3
and focusing on those subsets of a system that neglects attacks with
weights that sum up to at most 5. The main difference between our
approach and the approaches discussed so far is that they introduce
additional uncertainty into the knowledge representation formalism
while we assess the inherent uncertainty within abstract argumenta-
tion frameworks by a generalized semantics. A common ground of
our approach and the approaches above is the focus on abstract argu-
mentation frameworks and, therefore, the non-observance of uncer-
tainty within the structure of arguments. There are also a few works
that consider quantitative uncertainty within argument construction,
see e.g. [11, 10, 1]. In those works additional uncertainty is intro-
duced by weighting formulas used for creating arguments.

Similarly to our approach, the work [13] also assigns degrees of
strength to arguments of an abstract argumentation framework solely
based on the framework’s inherent uncertainty. In [13], an argumen-
tation framework is interpreted within an argumentation dialogue and
strengths indicate how defendable an argument is for a participant.
In contrast to our work, the degrees of acceptance in [13] have no
probabilistic interpretation and are computed in a propriety way as
to reflect the situation of a competitive argumentation game. Fur-
thermore, [13] is not concerned with semantical issues of abstract
argumentation frameworks.

7 Summary and Discussion

In this paper we proposed a new way for giving semantics to abstract
argumentation frameworks. Instead of extensions or labelings we
used probability functions to assign degrees of belief to arguments.
We proposed a generalization of complete semantics and showed
several interesting relationships between probabilistic and classical
semantics on the one hand and abstract argumentation and proba-
bilistic reasoning on the hand. In particular, we showed that the max-
imum entropy model of probabilistic reasoning corresponds to the
grounded labeling in abstract argumentation. We also illustrated the
usefulness of our approach in critical domains.

Probabilistic semantics generalizes the classical extension- and
labeling-based semantics for abstract argumentation and allows for
a more fine-grained differentiation of the status of arguments. For fu-

ture work, we intend to investigate the relationship of probabilistic
semantics with the notion of accrual [17] which is concerned with
effects of multiple arguments attacking another argument. Roughly,
it is rational to assume that the more reasons there are against a sin-
gle claim the less this claim is believed to be true. In our framework,
accrual of arguments is already weakly adhered for by property 2.)
of Def. 4 where, in particular, the number of attacks on an argument
influences the lower bound for the degree of belief in that argument,
see also Ex. 7. However, a deeper analysis of this issue is left for
future work.

Acknowledgements. The research reported here was partially sup-
ported by the SocialSensor FP7 project (EC under contract number
287975).

REFERENCES

[1] T. Alsinet, C. I. Chesfievar, L. Godo, and G. R. Simari, ‘A logic pro-
gramming framework for possibilistic argumentation: Formalization
and logical properties’, Fuzzy Sets and Systems, 159(10), 1208-1228,
(2008).

[2] P.Baroni, P. E. Dunne, and M. Giacomin, ‘On extension counting prob-
lems in argumentation frameworks’, in Proc. of the Third Int. Conf. on
Computational Models of Argument (COMMA’10), pp. 63-74, (2010).

[3] P. Baroni, M. Giacomin, and G. Guida, ‘Scc-recursiveness: a general
schema for argumentation semantics’, Artificial Intelligence, 168(1-2),
162-210, (2005).

[4] M. Caminada, ‘Semi-stable semantics’, in Proc. of the First Int. Conf.
on Computational Models of Argument (COMMA’06), pp. 121-130,
(2006).

[S] P. M. Dung, ‘On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games’, Artificial Intelligence, 77(2), 321-358, (1995).

[6] P. M. Dung and P. M. Thang, ‘Towards (probabilistic) argumentation
for jury-based dispute resolution’, in Proc. of the Third Int. Conf.
on Computational Models of Argument (COMMA’10), pp. 171-182,
(2010).

[7]1 P.E.Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge,
‘Weighted argument systems: Basic definitions, algorithms, and com-
plexity results’, Artificial Intelligence, 175(2), 457-486, (2011).

[8] J.Janssen, M. D. Cock, and D. Vermeir, ‘Fuzzy argumentation frame-
works’, in Proc. of the 12th Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU’08),
pp. 513-520, (2008).

[9] Edwin T. Jaynes, Probability Theory: The Logic of Science, Cambridge
University Press, 2003.

[10] J. Kohlas, ‘Probabilistic argumentation systems: A new way to com-
bine logic with probability’, Journal of Applied Logic, 1(3-4), 225-253,
(2003).

[11] P. Krause, S. Ambler, M. Elvang-Goransson, and J. Fox, ‘A logic of
argumentation for reasoning under uncertainty’, Computational Intelli-
gence, 11(1), 113-131, (1995).

[12] H. Li, N. Oren, and T. J. Norman, ‘Probabilistic argumentation frame-
works’, in Proc. of the First International Workshop on the Theory and
Applications of Formal Argumentation (TAFA’11), (2011).

[13] P-A. Matt and F. Toni, ‘Game-Theoretic Measure of Argument
Strength for Abstract Argumentation’, in Proc. of the 11th European
Conf. on Logics in Artificial Intelligence (JELIA’08), (2008).

[14] Sanjay Modgil, ‘Labellings and Games for Extended Argumentation
Frameworks’, in Proc. of the 21st Int. Joint Conf. on Artificial Intelli-
gence (IJCAI’09), pp. 873878, (2009).

[15] Jeff B. Paris, The Uncertain Reasoner’s Companion — A Mathematical
Perspective, Cambridge University Press, 2006.

[16] Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, 1998.

[17] H. Prakken, ‘A Study of Accrual of Arguments, with Applications to
Evidential Reasoning’, in Proc. of the Tenth Int. Conf. on Artificial In-
telligence and Law, pp. 85-94, (2005).

[18] Argumentation in Artificial Intelligence, eds., 1. Rahwan and G. R.
Simari, Springer-Verlag, 2009.

[19] Y. Wu and M. Caminada, ‘A labelling-based justification status of ar-
guments’, Studies in Logic, 3(4), 12-29, (2010).



