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Abstract. In the past ten years, the areas of probabilistic inductive logic
programming and statistical relational learning put forth a large collec-
tion of approaches to combine relational representations of knowledge
with probabilistic reasoning. Here, we develop a series of evaluation and
comparison criteria for those approaches and focus on the point of view of
knowledge representation and reasoning. These criteria address abstract
demands such as language aspects, the relationships to propositional
probabilistic and first-order logic, and their treatment of information on
individuals. We discuss and illustrate the criteria thoroughly by applying
them to several approaches to probabilistic relational knowledge repre-
sentation, in particular, Bayesian logic programs, Markov logic networks,
and three approaches based on the principle of maximum entropy.

1 Introduction

Originally, probabilistic logic was based on propositional logic, using conditionals
of the form (B |A)[x] to express that if A, then B with probability x. In order to
exploit its more expressive power, various approaches to combine probabilistic
logic with first-order logic have been proposed (see [3, 7]) like Baysian logic
programs (BLP) [7, Ch. 10], Markov logic networks (MLN) [5], or relational
Bayesian networks [8]. The principle of maximum entropy [14] is used to define
the probabilistic relational approaches in [13, 12, 6].

There are different motivations and objectives for choosing a particular rep-
resentation for probabilistic relational knowledge. Suppose we want to model
situations in a zoo (this scenario is adapted from [4]). There are elephants and
keepers, and we want to say something about whether elephants like their keep-
ers. Thus, we want to formalize generic statements like Generally, elephants like
their keepers or Elephants like their keepers with a probability of 0.9. Further-
more, we might want to state information about individuals, e. g., that Fred is
an elephant keeper the elephants do not like very much; this might be expressed
by Elephants like Fred only with a probability of 0.3. There are also situations
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where it is useful to list all individual elephants and keepers that are in the zoo.
Given a knowledge base representing our zoo model, we would like to be able
to use inference methods to answer questions about individuals occurring in the
model and relationships among them.

Example 1. To give a concrete example, consider the knowledge base KB with

c1 : (likes(X,Y ) | elephant(X), keeper(Y ))[0.9]
c2 : (likes(X, fred) | elephant(X))[0.3] c3 : (likes(clyde, fred))[1.0]

where X and Y are variables. There is a general statement (c1) that represents
the probability of elephants liking their keepers, and two more specific statements
(c2 resp. c3) that model the relationships for some individuals Clyde and Fred.

Note that naive grounding of KB using all possible instantiations yields contra-
dictory information since, for instance, we get both likes(clyde, fred))[0.3] and
likes(clyde, fred))[1]. Nonetheless, KB makes perfect sense from a commonsense
point of view as, for instance, rule c2 could be treated as an exception to c1,
inhibiting the instantiation of Y with the constant fred in c1.

Despite the variety of different approaches to probabilistic relational knowl-
edge representation, inference, and learning, not much work has been done on
systematically comparing them. In [2], a comparison between several statistical
relational learning systems is done, with an emphasis on the learning aspects. In
[9], a schema for expressivity analysis is proposed and used to show that rela-
tional Bayesian networks [8] are at least as expressive as MLNs. While providing
access to different modeling and learning approaches, the focus of the software
suite ProbCog [10] is its practical use and integration in technical systems. A
software platform providing a common interface to a series of probabilistic rela-
tional systems and supporting their evaluation and comparison is presented in
[18]. In [18], also some meta-level criteria for the evaluation and comparison of
different approaches are given. In this paper, we extend the discussion of these
criteria, focusing on knowledge representation aspects, apply them to further
approaches, and develop a series of new criteria especially with respect to the
role of individuals, prototypical elements, and universes. It has to be noted that
our investigation of these criteria stays on an abstract level since the objective
is not to take specific formalizations into account, but to address desirable prop-
erties and interesting features from a general and commonsense perspective. A
technical comparison with respect to default reasoning properties of the three
approaches employing the principle of maximum entropy can be found in [12].

After briefly recalling the notions of BLP, MLN, and three approaches based
on maximum entropy in Sec. 2, our comparison and evaluation criteria are pre-
sented along several dimensions, dealing with language aspects (Sec. 3), the
relationship to strict and propositional knowledge (Sec. 4), and individuals and
universes (Sec. 5). In Sec. 6, we conclude and point out further work.

2 Background: Probabilistic Relational Approaches

Bayesian logic programming combines logic programming and Bayesian networks
[7, Ch. 10]. The basic structure for knowledge representation in Bayesian logic



programs are Bayesian clauses which model probabilistic dependencies between
Bayesian atoms as in the following BLP corresponding to Ex. 1:

c1 : (likes(X,Y ) | elephant(X), keeper(Y ))
c2 : (likes(X, fred) | elephant(X)) c3 : likes(clyde, fred)

While in Ex. 1, a probability for each clause is given, expressing a constraint
on a satisfying distribution, for each Bayesian clause c, a function cpdc must be
defined, expressing the conditional probability distribution P (head(c) | body(c))
and thus partially describing an underlying probability distribution P . For in-
stance, cpdc1(true, true, true) = 0.9 would express our subjective belief that
likes(X,Y ) is true with probability 0.9 if elephant(X) and keeper(Y ) are true. In
order to aggregate probabilities that arise from applications of different Bayesian
clauses with the same head, BLPs make use of combining rules. Semantics are
given to Bayesian logic programs via transformation into propositional forms,
i. e. into Bayesian networks [15] (see [7, Ch. 10] for details).

Markov logic [5] establishes a framework which combines Markov networks
[15] with first-order logic to handle a broad area of statistical relational learning
tasks. The Markov logic syntax complies with first-order logic where each formula
is quantified by an additional weight value, e.g.

(elephant(X) ∧ keeper(Y )⇒ likes(X,Y ), 2.2)
(elephant(X)⇒ likes(X, fred), −0.8) (likes(clyde, fred), ∞)

Semantics are given to sets of Markov logic formulas by a probability distribution
over propositional possible worlds that is calculated as a log-linear model over
weighted ground formulas. The fundamental idea in Markov logic is that first-
order formulas are not handled as hard constraints (which are indicated by weight
∞), but each formula is more or less softened depending on its weight. A Markov
logic network (MLN) L is a set of weighted first-order logic formulas (Fi, wi)
together with a set of constants C. The semantics of L is given by a ground
Markov network ML,C constructed from Fi and C [7, Ch. 12]. The standard
semantics of Markov networks [15] is used for reasoning, e.g. to determine the
consequences of L (see [7, Ch. 12] for details).

The syntax of relational probabilistic conditional logic (RPCL) [19] has al-
ready been used in the representation of Ex. 1 and employs conditionals of
the form (B |A)[x] with first-order formulas A,B and x ∈ [0, 1]. A conditional
(B |A)[x] represents a constraint on a probability distribution P : Ω → [0, 1]
on the set of possible worlds Ω and states that the conditional probability of B
given A is x. In order to interpret conditionals containing free variables several
relational semantics have been proposed, see [19, 13]. The grounding semantics
[13] uses a grounding operator G, e. g. universal instantiation, that translates a
setR of conditionals with free variables into a set of ground conditionals. Then, a
probability distribution P G-satisfies R, denoted by P |=G R, iff P (B′ |A′) = x
for every ground (B′ |A′)[x] ∈ G(R). Both averaging and aggregating seman-
tics [12, 19] do not require a grounding operator but interpret the intended
probability x of a conditional with free variables only as a guideline for the
probabilities of its instances and the actual probabilities may differ from x.
More precisely, a probability distribution P ∅-satisfies R, denoted by P |=∅ R,



iff for every (B |A)[x] ∈ R it holds that P (B1 |A1) + . . . + P (Bn |An) = nx
where (B1 |A1), . . . , (Bn |An) are the ground instances of (B |A). A probability
function P �-satisfies R, denoted by P |=� R, iff for every (B |A)[x] ∈ R it
holds that P (B1 ∧ A1) + . . . + P (Bn ∧ An) = x(P (A1) + . . . + P (An)) where
(B1 |A1), . . . , (Bn |An) are the ground instances of (B |A). Note that these three
semantics are extensions of classical probabilistic semantics for propositional
probabilistic conditional logic [11]. Based on any of these semantical notions the
principle of maximum entropy [14, 11] can be used for reasoning. The entropy H
is an information-theoretic measure on probability distributions and is defined
as a weighted sum on the information encoded in every possible world ω ∈ Ω:
H(P ) = −

∑
ω∈Ω P (ω) logP (ω). By employing the principle of maximum en-

tropy one can determine the unique probability distribution that is the optimal
model for a consistent knowledge base R in an information-theoretic sense via

PME◦
R = arg max

P |=◦R
H(P ) (1)

with ◦ being one of G, ∅, or �. We abbreviate the approaches of reasoning
based on the principle of maximum entropy with grounding, averaging, and
aggregating semantics with MEG , ME∅, and ME�, respectively. We say that a
formula (B |A)[x] is ◦-inferred from R iff PME◦

R |=◦ (B |A)[x] with ◦ being one
of G, ∅, or �.

3 Language Aspects

We start with discussing properties concerning the language of an approach to
probabilistic relational knowledge representation, i. e. aspects relating to syntax
and semantics. Firstly, the semantics of the components of the knowledge repre-
sentation language should be as declarative as possible. In particular, it should
be possible to express basic concepts directly and to have an intuitive meaning
for all language constructs, inference and learning results:

(L-1) Direct expression of probabilities in the form of “A holds with a
probability of x”.

(L-2) Direct expression of conditional probabilities as in “Provided that
A holds, then the probability of B is x”.

Since an RPCL knowledge base supports representing formulas of the form
(B |A)[x] which constrain the conditional probability of B given A to x in any
model, MEG , ME∅, ME� obviously fulfill (L-1) and (L-2). The same holds for
BLPs when taking into account the conditional probability distribution func-
tions cpdc which must be defined for any Bayesian clause c. Since in an MLN
there is no obvious correspondence between the weight of a formula and its cor-
responding probability and because conditionals are not supported, (L-1) and
(L-2) do not apply to MLNs.

(L-3) Qualitative statements like “A is more probable than B” or “A is very
probable”.



Such qualitative statements can be expressed within none of the five approaches.

(L-4) Commonsense meaning: Probabilities are used for expressing uncer-
tainty, and for each basic construct of the knowledge representation lan-
guage there should be a clear intuitive or commonsense meaning. Examples
of such meanings are a statistical interpretation of expressions (with respect
to a population), or a subjective degree of belief (with respect to the set of
possible worlds).

The difference between statistical and subjective interpretations can be illus-
trated in the elephant-keeper-example 1 by contrasting “Most elephants like
their keepers” (statistical, as it refers to a whole population) vs. “Mostly, an ele-
phant likes its keeper” (subjective, as it refers to situations, i.e., possible worlds).

A Bayesian clause c in a BLP expresses qualitative information about the
conditional probability of the clause’s head given the body of the clause; the
actual conditional probability is given by cpdc which is applied for each instance.
Thus, these informations (together with the combining rules) yield subjective
conditional probabilities as a commonsense meaning of a BLP.

Although it can be observed that the greater the weight w of an MLN clause
F the more impact F will have on the probability distribution in the resulting
ground Markov network ML,C , a more precise intuitive meaning of (F,w) is
not evident. Besides this general negative statement, the probabilities resulting
from an MLN can be classified as subjective, as the MLN semantics is based on
possible worlds.

For each ground conditional (B |A)[x] in an RPCL knowledge base, its com-
monsense meaning is given by the conditional probability of B given A being x
for grounding, averaging, and aggregating semantics. However, the commonsense
interpretation of conditionals with free variables is substantially different in these
three semantics. For grounding semantics, a relational conditional is understood
as a universal quantification of the subjective conditional probability of each
ground instance within the range of the grounding operator. For averaging and
aggregating semantics, the commonsense meaning is a mixture of statistical in-
terpretation and degrees of belief. The averaging semantics yields a statistics of
subjective conditional beliefs. For instance, the conditional c1 in Ex. 1 with an
interpretation via ME∅ reads as “Considering a random elephant-keeper-pair,
the average subjective probability that the elephant likes its keeper is 0.9.” The
aggregating semantics exchanges the role of statistical (or population based) and
subjective view by providing kind of a subjectively weighted statistics. Here, c1
is understood as “Considering all elephant-keeper-pairs, the expected subjective
probability that elephants like their keepers is 0.9.” In contrast to the averaging
semantics, the aggregating semantics gives more weight to individuals (or tuples
of individuals) that are more likely to fulfill the premise of a conditional.

By taking both statistical and subjective aspects into account, both averag-
ing and aggregating semantics allow a more realistic approach to commonsense
reasoning in a relational probabilistic context. When entering a zoo (or consider-
ing the vague population of all elephants and keepers in the world) and uttering
conditional c1 of Ex. 1, human beings are very likely to express something like



“In (about) 90 % of all situations that involve an elephant and its keeper, I
will notice that the elephant likes the keeper.” This statement takes both beliefs
about possible worlds and about the population into account, and it is exactly
this perspective that averaging and aggregating semantics aim to represent. For
a further discussion and evaluation of these semantics, see [12].

(L-5) Closure properties: The results obtained by inference should be ex-
pressible in the knowledge representation language, thus enabling, e. g., the
integration of inferred knowledge into a knowledge base. Another closure
aspect refers to the query language: Can any formula being allowed in a
knowledge base be used in a query?

Given a (ground) query Q for a BLP, BLP inference can be used for computing
a cpdQ for Q by generating all possible combinations of evidence for Q, allowing
one to add this information as a BLP clause. Since with MLNs also probabili-
ties are computed, MLN inference results can not be used directly in an MLN
knowledge base where a weight is required for a formula. On the other hand,
ME inference results can be directly integrated into an RPCL knowledge base
(independently of the actual semantics).

In all approaches, queries must be ground, and taking a logic formula F from
a corresponding knowledge base, every ground instance of F can be used in a
query. For example, given the body of the BLP clause

(likes(clyde, jim) | elephant(clyde), keeper(jim))

as evidence, the BLP inference mechanism will determine the conditional prob-
ability of likes(clyde, jim) given the evidence. Consequently, open queries are
not allowed in any of the approaches; if a support system offers posing queries
with free variables (as it is allowed e.g. in Alchemy [5]), then such a query is
being treated as an abbreviation for posing a sequence of all possible ground
instantiations of that query.

(L-6) Semantical invariance: A general requirement for logic-based repre-
sentations applies also here: The semantics should be the same if the same
knowledge is expressed by syntactic variants.

Let KB be a knowledge base in any of the three relational approaches. Since for
any variable renaming σ, the respective semantics of KB and σ(KB) coincide,
semantical equivalence with respect to variable renaming holds for BLPs, MLNs,
and ME◦.

Another form of syntactic variants arises from propositionally equivalent for-
mulas, e. g. A and A ∧ A. In places where such formulas are allowed, they do
not give rise to a different semantics in any of the five approaches. However, it
should be noted that this case has to be distinguished carefully from the case of
adding a syntactic variant of a knowledge base element to that knowledge base:
If F ∈ KB and σ is a variable renaming replacing some variable in F with a
new variable not occurring in KB , then in general KB ∪ {σ(F )} has a differ-
ent semantics both for BLPs and for MLNs. For instance, when using noisy-or
as the combining function, the probability expressed by F—and thus also by
σ(F )—will typically increase when adding σ(F ) to KB .



Example 2. Consider a BLP consisting of the single clause c = (A(X) |B(X))
with cpdc(true, true) = 0.9, cpdc(true, false) = 0.5 and with noisy-or being the
combining rule for predicate A. Then querying this BLP with (A(d) |B(d)) re-
sults (obviously) in the probability 0.9 for A(d) being true given B(d) is true.
However, adding the clause c′ with c′ = (A(Y) |B(Y)) (with cpdc = cpdc′) which
is a syntactical variant of c results in a probability of 1−(1−0.9)·(1−0.9) = 0.99
as both c and c′ determine a probability of 0.9 and these probabilities have to
be combined by the corresponding combining function (noisy-or in this case) to
obtain the final answer to the given query.

Example 3. Similarly, consider an MLN consisting of the single formula (B(X)⇒
A(X), 1). Querying this MLN with (A(d) |B(d)) results in the (approximated)
probability 0.764974 for A(d) being true given B(d) is true. However, adding the
syntactic variant (B(Y)⇒ A(Y), 1) results in an (approximated) probability of
0.861964 (these probabilities have been computed with the Alchemy system).

As inference in RPCL is defined on well-defined semantics, syntactical vari-
ants do not influence the outcome of inference (for grounding, averaging, and
aggregating semantics).

(L-7) Explanation capabilities for inference: It is desirable to have expla-
nation capabilities of inference results. Which elements of the knowledge base
are responsible (to what degree) for an inferred result? Or which elements of
the knowledge base did not affect a result in any way? Can every result (or
at least some results) be derived (more or less) directly from certain elements
of the knowledge base? Or does any result essentially require the calculation
of an appropriate model?

The explanation of a BLP inference result is given by the obtained local Bayes
net which also encodes a (logical) derivation of the query. Therefore, it is obvious
which clauses of the BLP knowledge base were involved in the calculation of the
result. So the BLP approach offers some distinct level of explanation capability.

MLN inference is based on a log-linear model that has to be normalized in
order to represent a probability distribution, cf. [7, Ch. 12]. The value of this
normalization constant depends on the relationships among the formulas of an
MLN knowledge base. Therefore, an inferred probability depends on all formulas
of the knowledge base, because the weights of the formulas are relative values,
where the higher the weight the greater the influence of the formula. Since MLN
inference involves the construction of an appropriate ground Markov network,
independencies among certain ground atoms are indicated by this network. So
some independency aspects of inferred results can be explained by the net struc-
ture.

Inference in RPCL relies on solving the optimization problem (1). In some
special cases (regarding the query and the conditionals in the knowledge base),
the result of a query might be estimated directly considering how reasoning under
the maximal entropy distribution ”behaves”. So in such rare cases, the inferred
result can be explained by certain aspects of the knowledge base (having the



principle of maximum entropy in mind). But in general, no intuitive explanation
of inference results is evident for both the MLN and RPCL approaches.

4 Strict and Propositional Knowledge

In a probabilistic relational modeling language two essential dimensions are
present that distinguish the respective approach from propositional logic: The
probabilistic and the relational dimension. From a knowledge representation
point of view, the following questions arise naturally. What happens if one cuts
down any of these two dimensions? Which kind of logic does one obtain?

(SP-1) Strict Knowledge: Suppose one restricts the sentences occurring in
a knowledge base such that only strict probabilistic knowledge can be ex-
pressed. What is the representation level of this degenerated case, and what
are its semantics and inference properties? In particular, what is its relation-
ship to classical non-probabilistic (first-order) logic?

Of the formalisms BLP, MLN, and RPCL, only MLNs allow for existential quan-
tifiers (which in the Alchemy system are replaced by corresponding finite disjunc-
tions over instantiations with the elements of the underlying universe). Looking
at the language of logical MLN formulas we thus have first-order logic, restricted
to a finite fixed universe. In order to express that a particular formula F repre-
sents strict knowledge, the weight of F must be set to infinity [5]. In this case,
all possible worlds violating the strict formula are assigned zero probabilities by
the MLN, and the probabilities of the satisfying worlds sum up to 1. Hence, the
formulas that can be inferred with probability 1 from such an MLN F containing
only strict formulas are the same as the formulas that can be derived from F in
a classical way, provided F is satisfiable.

A Bayesian knowledge base containing only strict knowledge can be expressed
by a BLP containing only conditional probabilities with values 0 and 1. In this
case, also BLP semantics and BLP inference coincide with the semantics and
inference in first-order logic. In RPCL, a strict knowledge base is also obtained
by allowing just the two extreme probabilities 0 and 1. For a more detailed look
at the relationship of the obtained logics to first-order logic, let FOL∀ be the set
of quantifier-free first order formulas without function symbols, with all variables
being implicitly universally quantified. For strict formulas of BLPs, we get only
a subset of FOL∀ since in a BLP we can not express a disjunction like A ∨B.

Every set F of formulas of FOL∀ can be expressed by the RPCL knowledge
base FP = {(A | >)[1] | A ∈ F} containing only strict formulas. Then inference
based on F and FP is the same (independently of the actual used semantics
for RPCL). Looking at the other direction, let KB be a strict RPCL knowledge
base, and let KBFOL∀ = {¬A ∨ B | (B |A)[1] ∈ KB} ∪ {A ∧ ¬B | (B |A)[0] ∈
KB}. If KB is consistent with respect to grounding, averaging, or aggregating
semantics then inference in KB and KBFOL∀ is the same. However, for the strict
RPCL knowledge base KB ′ = {(B |A)[1], (A | >)[0]} we observe that KB ′ has
no models since a probability distribution P can satisfy a conditional {(B |A)[x]



only if P (A) > 0, independently of the actual semantics. On the other hand,
KB ′FOL∀

= {¬A ∨ B, ¬A} does have a model. Thus, reducing a conditional to
material implication is not adequate even in the case of only strict probabilistic
conditionals (see also [1]).

Likewise, we can look at the degenerated knowledge representation formalism
obtained by cutting out any relational representation aspects.

(SP-2) Propositional Knowledge: What kind of logic does one obtain if a
knowledge base contains only ground knowledge? What are its semantics
and inference properties, and in particular, what is its relationship to propo-
sitional probabilistic logic?

A BLP where all occurring atoms are ground obviously corresponds to a proposi-
tional Bayesian network. Restricting the formulas in an MLN to be variable-free
yields the semantics of a propositional Markov net: If L is an MLN containing
only ground atoms, then for any set C of constants the corresponding ground
Markov net is independent of C. For a ground RPCL knowledge base ground-
ing, averaging, and aggregating semantics coincide with classical probabilistic
semantics in probabilistic conditional logic and inference based on the principle
of maximum entropy is the same as in the propositional case, cf. [19].

5 Individuals and Universes

The core idea of relational knowledge representation is to talk about a set of
elements (a universe) and the relations among them. Thus, methods are needed
for specifying elements belonging to the universe, to refer to elements in the
universe, and to reason about elements and their properties and relationships.
In general, relational approaches may differ according to whether and how they
support any of the following criteria.

(U-1) Listing of elements: Can universes be specified by explicitly listing all
its elements?

The given facts in a BLP must all be ground; they determine the specific context
of the BLP, thus allowing to list all elements of a universe by mentioning them in
the atoms of the BLP. When defining an MLN, an explicit listing of all constants
C must be given, and the semantics of an MLN requires that different constants
denote different elements and that there are no elements other than the ones
denoted by constants. Similarly, all constants in an RPCL knowledge base denote
different elements, and there are no other elements.

(U-2) Open universe: Is it possible to have an open universe whose number
of elements is not a-priori known?

In BLP, MLN, and RPCL it is not possible to specify such open universes di-
rectly. However, in all approaches the extensional part—i. e. the ground atoms
resp. the given constants—can be exchanged while reusing the given generic



knowledge. For instance, the constants occurring in a query Q together with the
constants in a BLP P determine the Herbrand universe used to construct the
ground Bayesian network for answering Q.

(U-3) Prototypical elements: Specification of prototypical elements of a uni-
verse.

A universally quantified variable X in a relational statement says that this state-
ment applies to all elements of the considered universe. However, as Ex. 1 demon-
strates, there is the need to also express knowledge about individuals, referred
to by specific constants; in any of the five approaches, generic statements using
variables may be combined with statements about individuals. In the elephant-
keeper example, asking about a keeper jim will return the same probability as
asking the same question about a keeper james since the respective knowledge
bases do not contain any specific information neither about jim nor about james.
More generally, let CR be the set of constants occurring in a set of rules R and
let CU be the set of all constants under consideration. (Note that for MLN and
ME, CU is given explicitly, and that for a BLP, CU is determined when a query
is posed.) Then the elements in Cprot = CU\CR are all prototypical as they can
not be distinguished by any query asked w.r.t. R: If d1, d2 ∈ Cprot and Q is a
query containing d1, then the query Q′ obtained from Q by replacing d1 by d2
(and possibly also d2 by d1) yields the same probability as Q. This observation
holds for all of the five approaches.

(U-4) Inference for individuals: There should be a well-defined inference
mechanism to infer probabilities for particular individuals (either prototyp-
ical individuals or specific, named individuals). Does such inference depend
on the number of elements in a universe, and if so, what is the dependency?

Obviously, all approaches provide for querying about specific individuals. For
example, given a BLP, a ground Bayes net can be constructed to infer probabil-
ities for some ground query involving arbitrary constants. Similarly, this holds
for MLNs and the approaches based on maximum entropy. Further, the num-
ber of elements in the universe might influence the probability of a query in all
approaches. Consider the BLP B containing the clauses (B(X) |A(X,Y )) and
(A(X,Y )). Given the query B(c) for some constant c the probability of B(c)
depends on the number of instances of A(c, Y ), i. e., on the number of constants
in the universe. If noisy-or is the combining rule for B then the probability of
B(c) tends towards one when the number of constants in the universe tends to-
wards infinity, independently of the actual conditional probability distributions
of (B(X) |A(X,Y )) and (A(X,Y )). A similar observation can be made for MLNs
and RPCL. Another dependency of the number of elements in the universe and
probabilities of queries arises for RPCL under averaging and aggregating seman-
tics. Consider now the conditional (B |A)[x] and averaging semantics. If (B′ |A′)
is an instance of (B |A) that does not mention any constants in the knowledge
base then it is easy to see that the probability of (B′ |A′) tends towards x if the
number of elements in the universe tends towards infinity, cf. [12].



(U-5) Grounding: Is there a mechanism for (consistent) grounding of a knowl-
edge base?

The semantics of a BLP or an MLN knowledge base is defined via complete
groundings yielding a (ground) Bayesian network or a (ground) Markov net, re-
spectively. In a BLP, the logic part consists of Horn clauses which do not allow the
specification of negated conclusions, so that inconsistencies on the logical level
are avoided. Conflicting specifications on the quantitative level may arise when
having syntactical variants of a clause, e. g. (B(X) |A(X)) and (B(Y ) |A(Y ))
with different cpd’s. Such conflicts are resolved via the combining rules like
noisy-or (cf. Ex. 2). An MLN might contain both (F, w) and (¬F, w), but the
grounded semantics is still consistent and well defined. For RPCL under ground-
ing semantics, complete grounding might generate an inconsistency; therefore,
various more sophisticated instantiation strategies have been proposed [13].

Another important aspect connected to the notion of relational knowledge
and universes is the question whether probabilities are interpreted statistically
or as subjective degrees of belief, cf. the discussion in the context of (L-4).

6 Conclusion and Future Work

During the last years, many different approaches extending probabilistic propo-
sitional logic to a relational setting have been proposed. In this paper, we de-
veloped and illustrated various evaluation and comparison criteria and applied
them to five different modeling and inference methods, thereby putting emphasis
on the knowledge representation point of view.

There are several additional criteria that require further research and more
investigation in detail. When considering the expressivity of a particular model-
ing method, it is easy to see that any of the approaches discussed in this paper
can be used to define an arbitrary probability distribution over a finite domain,
but the more interesting question is how this can be done. Jaeger [9] proposes a
schema of comparing different formalisms by using two components: A generic
component that is independent of a particular universe, and a component that
takes into account a universe of constants. The sharp separation of generic and
specific knowledge as required in the expressivity analysis proposed in [9] is prob-
lematic since it prohibits a modeling taking into account both types of knowledge
in the form as it is done for instance in Ex. 1.

Another criterion is to ask what kind of queries can be answered, and which
can be answered efficiently. In the context of (L-5), we already discussed the
syntactic form of queries that can be answered in the considered approaches.
With respect to the complexity of inference, further experimental and theoretical
work is needed. For instance, inference in RPCL requires solving the numerical
optimization problem (1) whose complexity grows in the number of possible
groundings. Work on lifted first-order probabilistic inference is done in e.g. [16,
17], and in [6] for reasoning under maximimum entropy.
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